Input and Output Functions (VIOLN.in_out
)¶
This page details the functions which handle the input files and output of VIOLIN.
For more information on the types of accepted inputs, see Input and Output Files.
Functions¶
-
VIOLIN.in_out.
input_biorecipes
(model, model_cols=['Element Name', 'Element Type', 'Element IDs', 'Variable', 'Positive Regulators', 'Positive Regulators Connection Type', 'Negative Regulators', 'Negative Regulators Connection Type'])[source]¶ This function imports a model file which is already in the BioRECIPES format, and converts all characters to lower case
- Parameters
model (str) – Directory and filename of the file containing the model spreadsheet in BioRECIPES format Accepted files: .txt, .csv, .tsv, .xlsx
model_cols (list) – Column names of the model file. Default names found in model_columns
- Returns
new_model – Formatted model dataframe
- Return type
pd.DataFrame
-
VIOLIN.in_out.
input_reading
(reading, evidence_score_cols=['Element Name', 'Element Type', 'Element ID', 'Positive Reg Name', 'Positive Reg Type', 'Positive Reg ID', 'Negative Reg Name', 'Negative Reg Type', 'Negative Reg ID', 'Connection Type'], atts=[])[source]¶ This function imports the reading file into the correct mode
- Parameters
reading (str) – Directory and filename of the machine reading spreadsheet output Accepted files: .txt, .csv, .tsv, .xlsx
evidence_score_cols (list) – Column headings used to identify identical interactions in the machine reading output
atts (list) – List of additional attributes which are available in LEE output Default is none
- Returns
new_reading – Formatted reading dataframe, including evidence count and list of PMCIDs
- Return type
pd.DataFrame]
-
VIOLIN.in_out.
output
(reading_df, file_name, kind_values={'att contradiction': 12, 'dir contradiction': 10, 'flagged1': 20, 'flagged2': 20, 'flagged3': 20, 'full extension': 40, 'hanging extension': 40, 'internal extension': 40, 'sign contradiction': 11, 'specification': 30, 'strong corroboration': 2, 'weak corroboration1': 1, 'weak corroboration2': 1, 'weak corroboration3': 1})[source]¶ This function outputs the scored reading interactions. This writes output files, there are no return variables
- Parameters
reading_df (pd.DataFrame) – Dataframe of the scored reading dataframe
file_name (str) – Directory and filename of the output suffix
kind_values (dict) – Dictionary containing the numerical values for the Kind Score classifications Default values are found in kind_dict
Dependencies¶
Python: pandas and NumPy libraries, and os.path module
VIOLIN: formatting
and network
modules.
Defaults¶
Default Reading Columns
34 35 36 37 | reading_columns = ['Element Name', 'Element Type', 'Element ID',
'Positive Reg Name', 'Positive Reg Type', 'Positive Reg ID',
'Negative Reg Name', 'Negative Reg Type', 'Negative Reg ID',
'Connection Type', 'Mechanism', 'Paper ID', 'Evidence']
|
Default Model Columns (From BioRECIPES format)
38 39 40 | model_columns = ['Element Name', 'Element Type', 'Element IDs', 'Variable',
'Positive Regulators', 'Positive Regulators Connection Type',
'Negative Regulators', 'Negative Regulators Connection Type']
|